NOTE: All other errata have been corrected in the fourth printing of the second edition of *Water Chemistry* by Mark Benjamin.

Chapter 3		
p.128 Problem 19	<i>N</i> -nitrosodimethylamine [NDMA, with chemical formula $(CH_3)_2NN=O$] is a suspected carcinogen that can form via reactions between dimethylamine [DMA, $(CH_3)_2NH$] and dichloramine (NHCl ₂). DMA is used in the production of many industrial chemicals and can enter water supplies as a contaminant in polymers that are used in water treatment; it is also present in human urine, so it can enter natural water bodies in wastewater discharges that have not been effectively treated biologically. NHCl ₂ forms as a byproduct in water that is being disinfected with monochloramine (NH ₂ Cl), a process that has become increasingly popular because it disinfects the water with minimal formation of chlorinated disinfection byproducts (DBPs).	
	Reaction	Rate constant $(M^{-1}s^{-1})$
	$\text{DMA} + \text{NHCl}_2 \rightarrow \text{UDMH-Cl} + \text{H}^+ + \text{Cl}^-$	$k_1 = 52$
	$\text{UDMH-Cl} + \text{O}_2 \rightarrow \text{NDMA} + \text{HOCl}$	$k_2 = 1.4$
	UDMH-Cl + NH ₂ Cl \rightarrow Other Products	$k_3 = 0.8$
	 Predict the concentrations of DMA, NHCl₂, UDMH-Cl, O₂ and NDMA as a function of time for two hours in a batch experiment with initial concentrations of 10⁻⁵ <i>M</i> DMA, 5 × 10⁻⁴ <i>M</i> NHCl₂, and 3 × 10⁻⁴ <i>M</i> O₂; initially, the solution contains none of the other species shown in the reactions. Explain the concentration trends qualitatively. ¹⁸ Schreiber, J.M., and Mitch, W.A. (2006) "Nitrosamine formation pathway revisited: The importance of chloramine speciation and dissolved oxygen." <i>Environ. Sci. Technol. 40</i>, 6007–6014. 	